4,028 research outputs found

    Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems

    Full text link
    We consider projection algorithms for solving (nonconvex) feasibility problems in Euclidean spaces. Of special interest are the Method of Alternating Projections (MAP) and the Douglas-Rachford or Averaged Alternating Reflection Algorithm (AAR). In the case of convex feasibility, firm nonexpansiveness of projection mappings is a global property that yields global convergence of MAP and for consistent problems AAR. Based on (\epsilon, \delta)-regularity of sets developed by Bauschke, Luke, Phan and Wang in 2012, a relaxed local version of firm nonexpansiveness with respect to the intersection is introduced for consistent feasibility problems. Together with a coercivity condition that relates to the regularity of the intersection, this yields local linear convergence of MAP for a wide class of nonconvex problems,Comment: 22 pages, no figures, 30 reference

    Leveling the Field: Talking Levels in Cognitive Science

    Get PDF
    Talk of levels is everywhere in cognitive science. Whether it is in terms of adjudicating longstanding debates or motivating foundational concepts, one cannot go far without hearing about the need to talk at different ‘levels’. Yet in spite of its widespread application and use, the concept of levels has received little sustained attention within cognitive science. This paper provides an analysis of the various ways the notion of levels has been deployed within cognitive science. The paper begins by introducing and motivating discussion via four representative accounts of levels. It then turns to outlining and relating the four accounts using two dimensions of comparison. The result is the creation of a conceptual framework that maps the logical space of levels talk, which offers an important step toward making sense of levels talk within cognitive science

    Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility

    Full text link
    The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this work we consider elementary methods based on projections for solving a sparse feasibility problem without employing convex heuristics. In a recent paper Bauschke, Luke, Phan and Wang (2014) showed that, locally, the fundamental method of alternating projections must converge linearly to a solution to the sparse feasibility problem with an affine constraint. In this paper we apply different analytical tools that allow us to show global linear convergence of alternating projections under familiar constraint qualifications. These analytical tools can also be applied to other algorithms. This is demonstrated with the prominent Douglas-Rachford algorithm where we establish local linear convergence of this method applied to the sparse affine feasibility problem.Comment: 29 pages, 2 figures, 37 references. Much expanded version from last submission. Title changed to reflect new development
    • …
    corecore